Two glass transitions of polyurea networks: effect of the segmental molecular weight.
نویسندگان
چکیده
Polymer-nanoparticle composites (PNCs) play an increasing role in technology. Inorganic or organic nanoparticles are usually incorporated into a polymer matrix to improve material properties. Polyurea is a spontaneously occurring PNC, exhibiting a phase segregated structure with hard nanodomains embedded in a soft (elastically compliant) matrix. This system shows two glass transitions at Tg1 and Tg2. It has been argued that they are related to the freezing of motion of molecular segments in the soft matrix (usual polymer α-glass transition at Tg1) and to regions of restricted mobility near the hard nanodomains (α'-process) at Tg2, respectively. We present detailed dynamic mechanical analysis (DMA) measurements for polyurea networks with different segmental lengths l(c) (2.5, 12.1, 24.5 nm) of the polymer chains, i.e. different volume fractions ϕ(x) (0.39, 0.12, 0.07) of the hard domains. The two glass transitions show up in two distinct peaks in tan δ at Tα and Tα'. Analysing the data using a Havriliak-Negami term for the α- and α'-relaxation, as well as Vogel-Fulcher dependencies for the corresponding relaxation times, it is found that the α-glass transition at Tg1 increases strongly (up to ΔT = 70 K) with increasing ϕ(x), whereas the α'-transition at Tg2 remains unchanged. At ϕ(x)(c) ≈ 0.19 the two curves intersect, i.e. Tg1 = Tg2. This value of ϕ(x)(c) is very close to the percolation threshold of randomly oriented overlapping ellipsoids of revolution with an aspect ratio of about 1 : 4-1 : 5. We therefore conclude that around 19% of the hard nanodomains polyurea changes from a system of hard nanoparticles embedded in a soft matrix (ϕ(x) ≤ ϕ(x)(c)) to a system of soft domains confined in a network of percolated hard domains at ϕ(x) ≥ ϕ(x)(c).
منابع مشابه
A molecular simulation study of the glass transition of cross-linkedpoly(dicyclopentadiene) networks
Cross-linked polymer networks are widely used as structural and protective materials, which require strength and toughness. Experiments have shown that cross-linked poly(dicyclopentadiene) (pDCPD) networks provide similar strength but superior fracture toughness relative to commonly-used network chemistries like epoxy. To better understand pDCPD, we use atomistic molecular dynamics to study the...
متن کاملCytotoxicity and Genotoxicity Evaluation of Fluorapatite/bioactive Glass Nanocomposite Foams With Two Various Weight Ratios as Bone Tissue Scaffold: an in vitro study
The optimization of biomaterials’ biodegradation rate similar to tissue regeneration, is one of the main goals of tissue engineering. However, the necessity to assess their possible toxicity is always considered. The aim of this study was cytotoxicity and genotoxicity evaluation of fluorapatite/bioactive glass (FA/BG) nanocomposite foams with two various weight ratios to determine the optimal c...
متن کاملEffect of chain length on fragility and thermodynamic scaling of the local segmental dynamics in poly(methylmethacrylate).
Local segmental relaxation properties of poly(methylmethacrylate) (PMMA) of varying molecular weight are measured by dielectric spectroscopy and analyzed in combination with the equation of state obtained from PVT measurements. Significant variations of glass transition temperature and fragility with molecular weight are observed. In accord with the general properties of glass-forming materials...
متن کاملEvaluation of loading efficiency of azelaic acid-chitosan particles using artificial neural networks
Objective(s): Chitosan, a biodegradable and cationic polysaccharide with increasing applications in biomedicine, possesses many advantages including mucoadhesivity, biocompatibility, and low-immunogenicity. The aim of this study, was investigating the influence of pH, ratio of azelaic acid/chitosan and molecular weight of chitosan on loading efficiency of azelaic acid in chitosan particles. Mat...
متن کاملSingle Molecule Experiments Reveal the Dynamic Heterogeneity and Exchange Time Scales of Polystyrene near the Glass Transition
In a polymeric material near its glass transition temperature, segmental dynamics of a given spatial region may differ considerably from that of neighboring regions without apparent structural origin, analogous to the supercooled liquid state of low molecular weight glass formers. Given that the supercooled liquid state is a (metastable) equilibrium state, spatial variations in dynamics are exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 31 شماره
صفحات -
تاریخ انتشار 2014